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I. METHOD & TESTING

This paper outlines the construction of a ray tracer and
its application in evaluating different optical systems. Each
simulated optical system consists of a collimated input beam
and a finite number of optical elements. This sub-section
covers the working principles and testing of the building
blocks in the simulation, which are vital in understanding the
numerical investigation.

There are three implemented optical elements: spherical
surface, aspheric surface and output plane. Spherical surfaces
are combined to form simple lenses such as plano-convex
and biconvex lenses, whilst the output plane is used to form
an image at a given point. Aspheric surfaces are slightly
deformed spheres used to model adaptive optics, which are
discussed later. One key method of the spherical surface is
the intercept, which solves (1) to determine the interception
point r⃗i = r⃗0 + lk̂, where r⃗0 is the ray’s initial position. A
valid intercept is the closest intercept occurring in the forward
direction. When l is real, this corresponds to l− for a convex
surface and l+ for a concave surface.

l+,− = −r⃗ · k̂ ±
√
(⃗r · k̂)2 − (|⃗r|2 −R2) (1)

Where r⃗ is the vector from the sphere’s centre to the ray’s
initial position, k̂ is the normalised wave vector, and R is the
radius of the sphere. Complex l indicates no intercept.

For the exception case of zero curvature (planar surface), an
intercept based on (2) was used instead. If

∣∣∣n̂ · k̂
∣∣∣ < 10−6, the

ray is essentially parallel to the plane, indicating no possible
intercept. The threshold 10−6 is a choice that works well in
the investigation but can be set lower if necessary.

l =
|r⃗0 − r⃗i|∣∣∣n̂ · k̂

∣∣∣ (2)

Where r⃗0 is the ray’s initial position, r⃗i is a point on the
plane, and n̂ is the plane’s normal vector.

Once the rays hit the surface, they undergo refraction
modelled by Snell’s law with (2), which assumes constant
refractive indices in each medium. In reality, the refractive
index varies as a function of wavelength due to dispersion. The
refraction method terminates the ray if total internal reflection
occurs. Otherwise, the ray is updated with the refracted wave
vector k̂2 and propagated to the surface’s interception point
r⃗i. Simple cases with expected output were derived to see
whether the refraction method worked correctly. For instance,
an incident ray from the air (n1 = 1) to glass (n2 = 1.5)
at 45◦should refract at 28◦. The same incident angle from
air to glass would guarantee total internal reflection, and
setting n1 = n2 should ensure no refraction. The developed

function successfully passed these tests, giving confidence in
the physical modelling.

k̂2 =
n1

n2
[n̂× (k̂1 × n̂)]− n̂

√
1−

(
n1

n2

)2 ∣∣∣n̂× k̂1

∣∣∣2 (3)

Where k̂1 and k̂2 are the initial and final normalised wave
vector, n̂ is the surface’s normal vector (pointing outwards)
and n1, n2 are the refractive indices of the two mediums.

Those are the building blocks of the spherical surface class.
Using this as a parent class, the aspheric surface class was
created to model adaptive optics. An aspheric surface with
curvature C placed at z0 is described by (4), with the last two
terms representing deviations from the spherical shape [1].

z(ρ) = z0 +
Cρ2

1 +

√
1− (Cρ)

2
+A4ρ

4 +A6ρ
6 (4)

Where ρ =
√
x2 + y2 is the radial distance from the origin,

C is the surface’s curvature, z0 is the position of the surface’s
vertex, A4 and A6 are the aspheric coefficients.

The previous intercept method based on spherical geometry
using (1) no longer works here. Instead, a minimisation
approach was adopted, where the ray’s equation is parame-
terised in terms of t. The algorithm searches for tmin, which
corresponds to the minimum distance between the line and the
surface. Since most adaptive optics do not deviate massively
from the spherical shape [2], an initial guess tguess was made
based on the intercept between the ray and a spherical surface
of the same curvature. The validity of this initial guess is
limited to the cases with small deviations from the spherical
shape (A4, A6 ≪ 1) but is sufficient for the investigated
physics.

For the refraction method in (3), the surface’s normal
vector is required, which is computed using the gradient
operator. With the normal vector found, the rays are refracted
and propagated to the output plane, where the RMS spot
size is calculated to determine the optical performance. The
RMS is calculated from polar grid sampling [3], which
consists of a finite number of ray objects (N2) confined in
a cylinder of diameter D. Physically, this is a collimated
beam with a diameter D, which was implemented by first
generating two equally spaced arrays corresponding to the
radial distance and azimuth angle. Together, these arrays form
a mesh grid to generate the initial positions of rays starting
at z = 0. From this and setting the wave vector to be (0, 0,
1), N2 ray objects can be initialised to form a beam bundle.
The validity of this method is supported by Fig 6, which
shows a spot a diagram of a 5 mm collimated beam formed
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by 100 rays distributed uniformly to avoid biased RMS values.

Before beginning the numerical investigation, care was
taken to ensure the model functions correctly. In addition to
unit tests run to test each class and function separately, the
whole model was tested through simple cases with expected
outputs. A negative curvature surface acts as a diverging lens,
as observed in Fig 3. There should be no refraction for a
surface with n1 = n2, as seen in Fig 4. Finally, a biconvex
lens made up of a convex and concave surface should focus the
ray to a point defined by the lens-maker equation, as found in
Fig 5. This thorough testing gave confidence in the validity of
the constructed ray tracer, allowing the numerical investigation
to be conducted with ease.

II. NUMERICAL INVESTIGATION

The performance of different lenses was explored using a
collimated beam with λ = 588 nm. Each glass lens consists of
two surfaces on the z-axis with a refractive index of 1.5168,
separated by 5 mm. As seen in Fig 8 and 9, the first surface
is positioned at z = 100 mm, while the output plane is at
the paraxial focus z ∼ 198 mm (except for one plano-convex
case) to ensure a fair comparison between different lenses.

Performance of plano-convex lens

The aim here is to compare the RMS spot size associated
with each orientation of the plano-convex lens for different
beam diameters. A plano-convex lens consists of a curved
surface and a planar surface. For the first orientation (Fig
9), the curved surface was initialised with z0 = 100 mm,
C = −0.02mm−1, n1 = 1, n2 = 1.5168, raperture = 50
mm, and the planar surface was initialised with z0 = 105 mm,
C = 0mm−1, n1 = 1.5167, n2 = 1, raperture = 50 mm. The
second orientation (Fig 10) has similar parameters but with
the surfaces swapped around. With the optical system fully
set up, the beam consisting of 100 rays was initialised with a
fixed diameter (1 to 10 mm with an increment of 1 mm) to
determine the associated RMS spot size. A limited number
of rays used for the RMS calculation led to an estimated
statistical uncertainty of 10%, which is the mean difference
in the RMS value when 100 and 106 sample rays were used.
Increasing the sample size can improve the accuracy at the cost
of computation time, especially for the optimisation processes
later on.

The result is displayed in Fig 10, where the RMS spot size
grows exponentially with the beam diameter. The orientation
with the better performance is the first orientation (curved
surface followed by a planar surface). The RMS spot size is in
the order of 10−6 m, which approaches the diffraction scale of
λf/D. As the developed model only uses geometric ray optics,
the subsequent investigations use a large beam diameter of 10
mm to avoid the effect of diffraction.

Optimising a biconvex lens

For a 10 mm beam, the RMS spot size of a correctly
orientated plano-convex lens is 7.3 ± 0.7 µm. This was im-
proved further with a biconvex lens consisting of a convex and
concave surface. An objective function to find the associated

RMS spot size was developed and minimised to find the
optimal curvature combination (C1, C2). The searched solution
was bounded to be between [0, 1/5] and [-1/5, 0] mm−1,
respectively, which ensures that the lens is at least 10 mm
in diameter to contain the input beam. Implementing this
method led to the results shown in Table I, which shows a
63% reduction in spot size.

TABLE I: Performance of optimised biconvex lens compared to
plano-convex lens for a 10 mm beam.

Plano-convex lens Biconvex lens

C1/mm−1 0.00 1.60× 10−2

C2/mm−1 0.02 −4.25× 10−3

RMS spot size / µm 7.3 ± 0.7 2.7 ± 0.3

Optimising lenses with adaptive optics

Using aspheric surfaces, we slightly deformed the curved
surface(s) of the plano-convex and bi-convex lens to reduce the
RMS spot size further. Similar to before, objective functions
were developed to feed into a minimisation routine that
returns the optimal aspheric coefficients. This led to results in
Table II, where the optimal aspheric coefficients are small as
initially postulated. As seen in Fig 11, adaptive optics led to a
significant spot size reduction for a biconvex lens (∼ 10 times)
but only a slight reduction for a plano-convex lens (15%).

TABLE II: Optimised adaptive optics parameters for lenses.

Plano-convex lens Biconvex lens

C1/mm−1 0.00 1.60× 10−2

C2/mm−1 0.02 −4.25× 10−3

A4,1 / mm−3 0.00 9.99× 10−10

A6,1 / mm−5 0.00 −4.86× 10−7

A4,2 / mm−3 9.53× 10−7 1.00× 10−9

A6,2 / mm−5 −4.72× 10−8 −5.41× 10−7

RMS spot size / µm 4.1 ± 0.4 0.20 ± 0.02

III. CONCLUSION & FURTHER WORK

The constructed optical ray tracer successfully modelled
different optical systems using geometrical optics. A biconvex
lens with optimal curvature parameters is the best for produc-
ing a sharp image. Adaptive optics further reduce the RMS
spot size, especially for a biconvex lens. The diffraction effect
becomes dominant at this smaller scale length, which should
be modelled with Fourier optics. Other optical effects, such as
reflection and dispersion, should also be incorporated into the
existing model. Finally, it would be interesting to implement
the adaptive optics code in a system where mirrors can be
deformed in real time to reduce the RMS spot size. This
an ongoing area of research in astronomy, where mirrors are
deformed to remove aberrations due to atmospheric refraction.
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APPENDED PLOTS

Tracing ray trajectories through a convex surface

Fig. 1: Testing the model by tracing a few rays through a spherical
surface placed at z0 = 100 mm with C = 0.03 mm−1, n1 = 1
and n2 = 1.5. The rays converge at the expected focal point f =
z0 +R n2

n2−n1
= 200 mm.

Simple test cases

Fig. 2: Tracing paraxial rays through a concave surface with C =
−0.03 mm−1, n1 = 1 and n2 = 1.5. Rays diverge, as expected.

Fig. 3: Tracing rays through a surface with with C = 0.03 mm−1,
n1 = n2 = 1, z0 = 100, raperture = 33.3. No refraction occurs, as
expected.

Fig. 4: Tracing rays through two surfaces separated by 5 mm with
equal and opposite curvature of 0.03 mm−1. The focal length is ∼
32.7 mm, agreeing with the lens-maker equation 1/f = (nglass −
nair)(C1 − C2).
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Tracing a collimated beam through a spherical surface

Fig. 5: Tracing a 5 mm collimated beam (100 rays) through a
spherical surface with C = 0.03 mm−1, n1 = 1, n2 = 1.5,
z0 = 100, raperture = 33.3 mm. The beam converges at 200 mm,
which is the expected focal point.

Spot diagram for a 5 mm beam.

Fig. 6: Spot diagram at z = 0 mm. Notice the uniform distribution
of the points to avoid biased RMS values.

Fig. 7: Spot diagram at the focal plane z = 200 mm. For a sample
ray number of 100, the RMS spot size is ∼ 1.6 µm.

Ray trajectories for the plano-convex lens in both orientations

Fig. 8: Tracing 10 mm beam through a plano-convex lens (curved
surface followed by planar surface orientation).
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Fig. 9: Tracing 10 mm beam through a plano-convex lens (planar
surface followed by curved surface orientation).

Performance of the plano-convex lens

Fig. 10: Performance of plano-convex lens in both orientations for
different beam diameters. The vertical error bars represent ±10% due
to the small sample size (100 rays). Notice that the correct orientation
is a convex surface followed by a planar surface (red).

Comparing the performance of different lenses

Fig. 11: Performance of different optical lenses for a 10 mm beam.
The vertical error bars represent an uncertainty of 10% due to the
small number of rays used (100).
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